Spatial‐temporal correlation graph convolutional networks for traffic forecasting

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatio-temporal Graph Convolutional Neural Network: A Deep Learning Framework for Traffic Forecasting

The goal of traffic forecasting is to predict the future vital indicators (such as speed, volume and density) of the local traffic network in reasonable response time. Due to the dynamics and complexity of traffic network flow, typical simulation experiments and classic statistical methods cannot satisfy the requirements of mid-and-long term forecasting. In this work, we propose a novel deep le...

متن کامل

Dynamic Graph Convolutional Networks

Many different classification tasks need to manage structured data, which are usually modeled as graphs. Moreover, these graphs can be dynamic, meaning that the vertices/edges of each graph may change during time. Our goal is to jointly exploit structured data and temporal information through the use of a neural network model. To the best of our knowledge, this task has not been addressed using...

متن کامل

Graph Convolutional Networks

We present a scalable approach for semi-supervised learning on graph-structured data that is based on an efficient variant of convolutional neural networks which operate directly on graphs. We motivate the choice of our convolutional architecture via a localized first-order approximation of spectral graph convolutions. Our model scales linearly in the number of graph edges and learns hidden lay...

متن کامل

MIMO Graph Filters for Convolutional Neural Networks

Superior performance and ease of implementation have fostered the adoption of Convolutional Neural Networks (CNNs) for a wide array of inference and reconstruction tasks. CNNs implement three basic blocks: convolution, pooling and pointwise nonlinearity. Since the two first operations are welldefined only on regular-structured data such as audio or images, application of CNNs to contemporary da...

متن کامل

Graph Convolutional Networks for Named Entity Recognition

In this paper we investigate the role of the dependency tree in a named entity recognizer upon using a set of Graph Convolutional Networks (GCNs). We perform a comparison among different Named Entity Recognition (NER) architectures and show that the grammar of a sentence positively influences the results. Experiments on the OntoNotes 5.0 dataset demonstrate consistent performance improvements, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Iet Intelligent Transport Systems

سال: 2023

ISSN: ['1751-9578', '1751-956X']

DOI: https://doi.org/10.1049/itr2.12330